

SQLite Internals:

How The World's

Most Used Database

Works
by Abdur-Rahmaan Janhangeer

build: 0.12.0

Foreword

Introduction

Contributors

The Story Behind

Technical Context

Overview

File & Record Format

Rollback & WAL mode

Bytecodes

Interesting Features

Knowing Internals

How SQLite Is modified

The Future

References

1. Foreword on SQLite

Internals
To all SQLite lovers. This book discusses SQLite

internals in depth.

You can [view compileralchemy.com] or [read

online] or [contribute to the book] or
 [download

the book] or
 [support by buying on leanpub]
 It is

OpenSource! Feel free to contribute a section,

propose rewrites, fix typos etc. If you have

comments, mail them to arj.python at gmail dot

com .

The book is in progress as of now!

Particular thanks to the LibSQL maintainers. Started

this book as a series of presentations to DevFest

and the LibSQL community.
 I wanted to contribute

to LibSQL.
 A book is far better than presentation

slides.

I also owe much to Dan Shearer from LumoSQL. For

his time reviewing a pre-run of the presentation.

Also, i just could not find a sane free book on SQLite

internals!
 Free books help keep human legacy

around.
Without books, you burn time, a lot of it.

If you want to discuss dbs all day long, i recommend

joining the Multiprocess communnity #db (Phil

Eaton).

Since i scrapped my notes together, this did not

start as a proper book. PRs welcome.

https://www.compileralchemy.com/
https://www.compileralchemy.com/books/sqlite-internals/
https://github.com/compileralchemy/compileralchemy.github.io/blob/source/data/books/sqlite_internals.md
https://www.compileralchemy.com/assets/books/foss_sqlite_internals.pdf
https://leanpub.com/sqlite-internals
https://github.com/libsql/libsql
https://github.com/LumoSQL/lumosql
https://discord.gg/CjYMRrySNq

2. Introduction
SQLite is a file-based database which is extremely

reliable and stable. It is the world’s most used

database. It’s used on military devices, on planes

(the A350 for instance) and in space.
The codebase

and mechanisms it uses is extremely complex. The

seemingly simple nature of it and adoption makes a

good case for deep diving into in a fascinating piece

of software.

It also implemented many features years ahead of

popular databases like partial indexes.

It’s pronounced S-Q-L-ite, like mineral. But whatever

is easy to pronounce is fine [10].

3. Contributors

Main content:

 Abdur-Rahmaan Janhangeer,

https://github.com/Abdur-RahmaanJ

Thanks

Stephan Beal, https://github.com/sgbeal

 Reporting and correcting the contribution

link

Jakub Martin, Author of OctoSQL,

https://github.com/cube2222/octosql

 For popularising the book

General improvements

Jaime Terreu,

https://github.com/Confidenceman02

Aryan Arora, https://github.com/aryanA101a

4. The Story Behind
SQLite was written by Dwayne Richard Hipp.
It is not

uncommon to see it being abbreviated to D. Richard

Hipp or DRH for short.
 The story of how the

database came around is fascinating.
 It sheds light

on the author’s mindset and SQLite general coding

culture.

DRH holds a computer science doctorate in

computational linguistics without taking prior

programming courses.
 He also has a masters in

electrical engineering and went to work for Bell

Labs! [9]

Since his early days he was very dedicated. He

dropped out of academia as the race was full of

candidates.
 He turned to consulting.
 During that

time, he was signed a software contract with

shipyard Bath Iron Works. His work involved finding

the solution to pipe burst failure by controlling

valves on a warship: the DDG-79 Oscar
Austin.

Richard had a problem.
 The software often did not

work as the database server was down all the time.

The ship was using Informix.
 So, he thought of

spinning his own database.

one of the guys I was working with says,

“Richard, why
 don’t you just write one?”

“Okay, I’ll give it a try.

…

all government contracts got shut down,

so I was out of
work for a few months, and

I thought, “Well, I’ll just write
 that

database engine now.”

Contrary to many popular projects, Richard thought

of a bytecode-driven engine since the begining.
This

shows his previous exposure to compiler

crafstmanship.

so I wrote a byte code engine that would

actually run a
 query and then I wrote a

compiler that would translate
 SQL into

that byte code and voila, SQLite was born.

How SQLite picked up speed

SQLite was not an overnight success though people

did realise it’s potential since the early days.
This is a

list of some milestones which led to SQLite what it is

today.

2000 - The Internet: Since the shipyard was

adamant on Informix, SQLite was not used on the

warship.
Robert put the code out in the wild on the

internet.
 One great moment was a personal

initiative from a user running it on his Palm Pilot.

2001 - Motorola OS: Motorola was a phone

manufacturing company. The operating system they

were using had SQLite on it.
 They wanted some

help. During the whole time, Richard has been

working on the project as an OpenSource one.
 So,

they proposed an $80k contract to Richard for

support and enhancements.
 It was the first time

that the author realized that OpenSource can bring

in money.
He rounded his OSS team and shipped the

project.
 This would be the first in a series of long-

lasting relationship with phone companies.

200x - America Online: The next serious company

to reach out was America Online.
 They wanted the

database on CDs they were mailing to customers.

Richard enthusiastically accepted the offer and

midway realized the solution he had in mind would

not work.
 These types of challenges helped SQLite

grow into a robust product.
 At one point they also

requested to be able to handle binary data, the

feature was incorporated in SQLite3.

2005 - Symbian OS: Symbian flew Richard to their

office in London.
 Among many databases they

evaluated, both OSS and closed-source, SQLite was

chosen among 10 dbs [10].
 Symbian was a great

company but they had a problem. They wanted to

ensure that the project lives on even if Richard is no

longer around.
 They wanted to increase the bus

factor by having a SQLite consortium.

200x - SQLite Consortium: Richard liked the idea of

a consortium.
He started devising a plan of his own.

Luckily someone from the Mozilla foundation

(Mitchell Baker) reached out to him.
 They did not

like the way he was setting up the framework

around the consortium by giving members voting

rights.
 They proposed keeping the direction of the

project in developers hand. The friend from Mozilla

being a lawyer was adamant on this point and saw

through the implementation of the current setup.
It

is the consortium which really helped SQLite keep

going, stay current, relevent and vibrant.

200x - Google & Android: Google was a complete

outsider to the phone game.
Soon, they approached

Richard for a daring project.
 Having a phone

connected to the internet with a robust software

lifecycle was something extraordinary.
They wanted

SQLite to behave perfectly on this innovation.

Richard’s experience with the phone industry knew

that Android was going to be a huge hit.

We were going around boasting to

everybody naively
that SQLite didn’t have

any bugs in it, or no serious bugs,
 but

Android definitely proved us wrong. … It’s

amazing
how many bugs will crop up when

your software
 suddenly gets shipped on

millions of devices.

200x - Rockwell Collins: Rockwell Collins was a

multinational corporation providing avionics and

information technology systems and services to

government agencies and aircraft manufacturers.

They wanted the DO-178B aviation quality standard

for SQLite.
It meant 100% MCDC test coverage.
This

helped shaped SQLite test-backed approach to

development.

SQLite tests are better than even postgres which

relies on peer reviews [3]. This allows the

developers to experiment and change code

fearlessly.

5. Technical Context
SQLite is notorious for implenting a bunch of

functionalities from scratch.
 It’s a daring, amazing,

bold and crazy spirit which requires confidence and

professionalism.
 People also call it the From First

Principles approach.
 With no internet at the tips of

the fingers and no wikipedia to consult, the author

deserves massive respect.
 His teachers must have

been proud to have their student be the living

embodiment of what computer science and

software engineering should be about.

DRH does look for alternatives. He does try out

libraries.
 But, at the end of the day he ends up

coding from scratch.

Engine: First, he needed a database engine, he

looked around, was not satisfied and went on to pull

off his own implementation.

B-tree implementation: The same goes for the b-

tree layer.
Much like a hero from a movie, he pulled

Donald Knuth’s algorithm book from the shelf and

coded the b-tree he needed.
He also completed the

book’s exercise about deleting elements.

Parser: He doesn’t understand the use of YACC,

Bison and Lex when anybody can code their own

parsers. He coded his own parser-generator called

Lemon.

Version Control System: He was using Git, but

some functionalities were scratching his itch to build

his own Version Control System. So, as usual, he

wrote Fossil. It’s the VCS you would download and

configure if you download the source as is from the

website.

… And it’s GPL, and
 so SQLite Version 1

was GPL, it had to be because it
 was

linking against the GPL library.
But GDBM

is only key-value, I can’t do range queries

with it. Then I said, “I’m gonna write my

own B-tree
layer

Disassembling and re-building is really in his DNA.

He had failed episodes of course, but it

demonstrates an incredible spirit.

Printing was not an option. I looked at

ways of making my own printer. … , there

was not much electrical interface to it. So

that didn’t work out well. [10]

To drive the point home, i think we can leave it at

this one.

And the text editor that I used to write

SQLite is one that I wrote myself. [10]

Why implement from scratch?

The from scratch spirit is much preferred as it

enables the developers to have the freedom they

want.
They can choose what they want or how they

implement things.
 Just wrapping over another

library might be a problem waiting to happen.

We can expect the library to be fairly complex as

there are several components present which require

knowledge of their own.

At one point, DRH also notes that they were going

to use the Berkeley DB at some point but decided

against it due to vague documentation [10] and

coded their own implementation. The were amused

that sometimes after the licensing changed causing

lots of people to forsake the DB.

I never understood lex because it’s so easy

to write a bunch of C codes faster then

Lex [1]

General points before diving

in

Competing with f-open: SQLite advertises itself as

being in competition not with other databases but

with saving custom data on file.
If you want to save

data to a file, just use and share SQLite databases.

Relationship with Postgres: SQLite tries hard to

keep up to the SQL standard postgres adopts as the

team considers the db as the best reference

platform [11]. DRH was the keynote speaker at

PGCon 2014 with a talk entitled “SQLite: Protégé of

PostgreSQL”.

Relationship with TCL: Sometimes, SQLite talks are

given at TCL conferences. This might be tripping

from a conceptual and search point of view.
SQLite

started as a TCL extension.

The spirit of typing: SQLite preferred to be called

flexibly typed rather than weakly typed.
 By design,

the author aimed not to get in the way of the

programmer by allowing data of a different type to

be inserted in the db.
 It’s directly inspired by

scripting languages.

The symbiotic relationship between SQLite And

Fossil: SQLite’s code is managed by Fossil, it’s

Version Control System. And, Fossil uses SQLite.

No license: Being in the public domain by waiving

rights to the code is an incredible decision.
Add to it

no external dependencies it means that people

using SQLite have the peace of mind that the SQLite

authors are not going to sue them over some piece

of code or worry about some 3rd party companies

talking about stealing code.

One big source file: SQLite also provides a source

file where all files are amalgamated into so that

SQLite can be inserted easily into projects and

compiled.

Stats: SQLite is about 160k lines of code as now,

with some 230k if comments and blank lines are

included.

6. Overview
A rough overview of SQLite is as follows

A brief overview of the compilation step is as

follows.
 The compiler takes the SQL code and

outputs bytecodes.
 The Virtual Machine (VM) takes

the bytecode and executes it.

The compilation and

execution process

A better view of the process might be

The first part of the library is called the compiler. It

is executed using the sqlite3_prepare_v2()

function and outputs prepared statements aka

bytecodes.

The second part of the library runs the program. It is

executed using the sqlite3_step() function.

The btree layer and onward is called the storage

engine.

Steps explanation

👉 Tokeniser - Parser: The parser is a push-down

automaton parser.
 It is reentrant and thread-

safe. It is generated by lemon. Relevent files

include parse.y , tool/lemon.c .
 Outputs

AST (sqliteInt.h).

👉 Code generator: It does semantic analysis. It

does AST transformation using select.c .
 It

determines join order using where*.c ,

whereInt.h .
 It does query planning using

select.c .
 It outputs bytecodes using

build.c , delete.c , expr.c , insert.c ,

update.c .
 It is the section with the most lines

of code.

👉 Virtual Machine: It is the section with the 2nd

most number of lines of code.
 Relevant files

includes vdbe.c , vdbe.h , vdbeLnt.h ,

vdbe*.c , func.c , date.c .
 It executes

bytecode instructions from the previous step.

👉 B-tree: SQLite uses both B+ and B- trees. B+

tree is used for storing tables and B- is used for

indexes.
 There can be multiple btrees per

database file.
 It is read using a cursor.

Concurrent reads and writes on same table is

done using different cursors.

👉 Pager: Also called page cache.
 Prevents from

data corruption in case of power loss.
 It uses

two mutually exclusive modes to achieve this.

The Roll back mode or the Write Ahead Log

(WAL) mode.
 It also enforces concurrency

control.
 It is responsible for dealing with in-

memory cache.
Relevent files include pager.c ,

pager.h , pcache1.c , pcache.c ,

pcache.h , wal.c , wal.h .

👉 Shim: The Shim layer is responsible for

compression, logging and encryption.
 It is used

to emulate an OS layer.
 It is used for tests to

simulate hardware failures.
 Relevant files

include test_multiplex.c , test_vfstrace.c

👉OS Interface: It is used for os-specific

interfacing. It can be changed at runtime.
 It is

responsible for I/O (test_onefile.c).

Relevant files include os.c , os_unix.c ,

os_win.c , os*.h . The Virtual File System

(VFS) is another name this layer.

Important concepts

Those are some concepts which occur frequently

and it pays to know about them in advance.

Bytes

A byte consists of 8 bits.

B-tree

A B-tree is a data structure providing logarithmmic

operation time.
 SQLite keeps the depth as low as

possible.
It plays on the breadth of the 2nd and 3rd

layers.
 It provides storage in this usecase for

key/data storage with unique and ordered keys.

Big and small endian

TODO

Var int

TODO

A variable-length integer or “varint” is a static

Huffman encoding of 64-bit twos-complement

integers that uses less space for small positive

values. A varint is between 1 and 9 bytes in length.

The varint consists of either zero or more bytes

which have the high-order bit set followed by a

single byte with the high-order bit clear, or nine

bytes, whichever is shorter. The lower seven bits of

each of the first eight bytes and all 8 bits of the

ninth byte are used to reconstruct the 64-bit twos-

complement integer. Varints are big-endian: bits

taken from the earlier byte of the varint are more

significant than bits taken from the later bytes.

7. File & Record Format
A SQLite file is a series of bytes.

It is divided into equally-sized chunks called pages.

There can be one or more pages.

The first page is the most important. It declares vital

information about the file.
The first page looks like

this.
 The first 16 bytes contains the string SQLite

format 3 . In hex it is like this 53 51 4c 69 74 65

20 66 6f 72 6d 61 74 20 33 00 , including the

null terminator at the end \000 .

The next two bytes states the file size.
 Before

3.7.0.1 it had to be a power of two between 512 and

32768.
 As from 3.7.1 it can be of size 65536. Since

such a large number cannot fit in 2 bytes, the value

is set to 0x00 0x01 .
 This represents big-endian 1

and is used to specify a size of 65536.

The first page

Here is a complete table about what the first page

contains.

start

byte

offset

byte

description

00 16 The header string: “SQLite format 3\000”

16 02 The database page size in bytes. Must be a power of

two between 512 and 32768 inclusive, or the value 1

representing a page size of 65536.

18 01 File format write version. 1 for legacy; 2 for WAL.

19 01 File format read version. 1 for legacy; 2 for WAL.

20 01 Bytes of unused “reserved” space at the end of each

page. Usually 0.

21 01 Maximum embedded payload fraction. Must be 64.

22 01 Minimum embedded payload fraction. Must be 32.

23 01 Leaf payload fraction. Must be 32.

24 04 File change counter.

28 04 Size of the database file in pages. The “in-header

database size”.

32 04 Page number of the first freelist trunk page.

36 04 Total number of freelist pages.

40 04 The schema cookie.

44 04 The schema format number.Supported schema

formats are 1, 2, 3, and 4.

48 04 Default page cache size.

52 04 The page number of the largest root b-tree page

when in auto-vacuum or incremental-vacuum modes,

or zero otherwise.

56 04 The database text encoding. A value of 1 means UTF-

8. A value of 2 means UTF-16le. A value of 3 means

UTF-16be.

60 04 The “user version” as read and set by the

user_version pragma.

64 04 True (non-zero) for incremental-vacuum mode. False

(zero) otherwise.

68 04 The “Application ID” set by PRAGMA application_id.

72 20 Reserved for expansion. Must be zero.

start

byte

offset

byte

description

92 04 The version-valid-for number.

96 04 SQLITE_VERSION_NUMBER

The first page contains 100 bytes less storage space.

The free space can be of any type of page, but, it will

contain less information than a typical page handles.

This needs some adjustments in some cases in the

way information is stored for that type of page.

Types of pages

In this section we pass over the different types of

pages used by SQLite.
Any page will be one of these

types:

👉 The lock-byte page

👉 A freelist page

👉 A b-tree page

👉 A payload overflow page

👉 A pointer map page

The Lock-Byte Page

This page is retained only to preserve backward

compatibility.
 It was conceived for Microsoft 95.

When it is present, it occurs at bytes offset

1073741824 and 1073742335.
 If the file doesn’t

have that many bytes, the page does not exist.
 If it

does have the necessary bytes, there is only one

such page.
 It’s dealt with by the VFS layer rather

than SQLite core.

Freelist pages

Unused pages are stored on the freelist.
It is a linked

list of trunk pages with each page containing page

numbers for zero or more freelist leaf pages, which

contain nothing.
 These pages can be reused.
 When

using the VACCUM command, the freelist is purged

and a new database file is written.
 When auto-

vaccum is enabled, freelist is not used a new

compacted db is written on each commit.

B-Tree pages

B-tree pages can be either a table page or an index

page. A page is always either a leaf pae of an

interior page.

A btree looks like this

The data of a root page is the key of an interior

page.
The data of an interior page is the key of a leaf

page.
 Database records are stored in the data

section of a leaf page.

A key in a leaf table is a 64-bit signed integer.
 The

key of a table B-tree is by default the rowid column

of the table.
 If the table has integer primary keys,

the primary key column is used instead.
 If the table

has been defined WITHOUT ROWID , it is stored in an

index B-tree.
The key for such a table is composed of

the columns of the primary key followed by all

remaining columns.
 There is one index B-tree for

each index of the database unless the index is

already represented by a table B-tree, like the

integer primary key tables mentionned above.

An interior page contains k number of keys, at least

2, upto how many fits on page.
This is unless page 1

is an interior b-tree page in which case it can handle

one key only.
 It also contains k+1 number of

pointers to child b-tree pages
 A pointer is a 32-bit

unsigned integer page number of the child page.

Conceptually speaking, in an interior b-tree page,

the pointers and keys logically alternate with a

pointer on both ends, keys in ascending order from

left to right.

A leaf page can be a root page. Root

pages are identified by their root page

number

There is one table b-tree in each db file for each

rowid table.

A rowid table is a table which has a unique key to

access data in the b-tree strorage engine.

About overflowing

If the data section in a leaf page becomes bigger

than the space available in a page, it is linked to

another page. If it’s size exceeds the other page, it is

added to yet other another page.

Large keys on index b-trees are split up into

overflow pages so that no single key uses more than

one fourth of the available storage space on the

page and hence every internal page is able to store

at least 4 keys

The integer keys of table b-trees are never large

enough to require overflow, so key overflow only

occurs on index b-trees.

Record format

The data part of a leaf page is stored in binary

format and consists of 3 parts:

👉 The header

👉 The type part

👉 The data part

A row such as this

id 0

price 3

name shoe

Would be encoded as

[04 | 01 | 01 | 21] [00 | 03 | shoe]

Here’s the table SQLite consults for encoding and

decoding

Serial

Type

Content

Size

Value meaning

0 0 NULL

1 1 8-bit twos-complement integer.

2 2 big-endian 16-bit twos-complement integer.

3 3 big-endian 24-bit twos-complement integer.

4 4 big-endian 32-bit twos-complement integer.

5 6 big-endian 48-bit twos-complement integer.

6 8 big-endian 64-bit twos-complement integer.

7 8 big-endian IEEE 754-2008 64-bit floating , number.

8 0 integer 0. (Only available for schema format >= 4)

9 0 integer 1. (Only available for schema format >= 4)

10,11 variable Reserved for internal use. These serial type codes

will never appear in a well-formed database file,

but they might be used in transient and temporary

database files that SQLite sometimes generates

for its own use. The meanings of these codes can

shift from one release of SQLite to the next.

N≥12,

even

(N-12)/2 Value is a BLOB that is (N-12)/2 bytes in length.

N≥13,

odd

(N-13)/2 Value is a string in the text encoding and (N-13)/2

bytes in length. The nul terminator is not stored.

So, here’s what the record means

[04] header size, including the size

itself

[01] type 8-bit twos-complement integer.

[01] type 8-bit twos-complement integer.

[21] As 21 >= 13 and is odd,

 (N-13)/2 == length of string shoe in

encoding defined in db

 here we are assuming utf8

 (N-13)/2 == 4

 N == 4 * 2 + 13

 N == 21

[00] value of id field

[03] value of price field

[shoe] value of name field

Btree page format

This is what a b-tree page looks like.

The reserved region is found in all pages except the

locking page.
 It can be used by extensions to write

per-page information.
 It’s size is defined in the

database header at an offset of bytes 20.

Here is the format of the b-tree page header.

OffsetSizeDescription

0 1 The one-byte flag at offset 0 indicating the b-tree

page type.

02 (0x02): page is an interior index b-tree page.

05 (0x05): page is an interior table b-tree page.

10 (0x0a): page is a leaf index b-tree page.

13 (0x0d): page is a leaf table b-tree page.

Any other value for the b-tree page type is an error.

1 2 The two-byte integer at offset 1 gives the start of the

first freeblock on the page, or is zero if there are no

freeblocks.

3 2 The two-byte integer at offset 3 gives the number of

cells on the page.

5 2 The two-byte integer at offset 5 designates the start

of the cell content area. A zero value for this integer

is interpreted as 65536.

7 1 The one-byte integer at offset 7 gives the number of

fragmented free bytes within the cell content area.

8 4 The four-byte page number at offset 8 is the right-

most pointer. This value appears in the header of

interior b-tree pages only and is omitted from all

other pages.

TOADD: Freeblock

8. Rollback & WAL

mode
In case of power cuts, SQLite ensures that data is

not lost.
 The pager layer responsible for executing

these two modes.
The Write Ahead Log (WAL) mode

is better than the Rollback for for two reasons:

👉 It is faster

👉 It allows reads and writes at the same time

The Rollback mode is the default primarily due to

these reasons

👉 Some computers are still around which have weird memory

mappings

👉 Several computers accessing the file might cause issues

👉 Backward compatibility is not guaranteed. Waiting until WAL

is even more stable.

👉 Hash lookup for page in WAL mode is in shared memory

The Rollback mode

When reading occurs, the process acquires a shared

lock.

A shared lock prevents processes from changing

data.

When writing, a reserved lock is acquired.
A journal

is also created.
 Journals in the this mode have the

.database-journal extension.

Then the data is copied to the journal cache

Then the data is changed

Then the data in the journal cache is flushed to the

journal on disk.

This takes some times and can be turned off but,

won’t guarantee that data is safe during power

failure.

The an exlclusive lock is acquired.
This stops writing

completely!

The new values are flushed to the os cache.

Then it is flushed to disk

When a commit occurs, it deletes the journal.

If power loss before commit

Now, if there is a power loss before commit, the

situation would be as follows.

When power is restored, a shared lock is acquired.

Then an exclusive lock is acquired.

Then data is copied from the journal disk to the

journal cache.

Then it is copied from the journal cache to the OS

cache.

Then it is flushed to disk

The Write Ahead Log (WAL)

mode

Just as in Rollback mode, first a shared lock is

acquired.
 WAL journals have a .database-wal

extension.

Then, the value is changed

Now, if another process is accessing the db, the old

value is flushed to the journal cache.

The new process gets a snapshot of the data.
 For

illustration purposes below, b from wal cache, a

from os cache.

Different reads and writes with snapshot isolation

can occur.

A checkpoint operation truncates the journal cache

and disk content.

9. Bytecodes
The entire Virtual Machine is contained in vdbe.c .

On compiling the project, vdbe.c produces two

files: opcodes.h which assigns a numerical value to

opcodes and opcodes.c which designates a

symbolic name for an opcode.

opcodes.h

/* Automatically generated. Do not edit */

/* See the tool/mkopcodeh.tcl script for

details */

#define OP_Savepoint 0

#define OP_AutoCommit 1

#define OP_Transaction 2

#define OP_Checkpoint 3

#define OP_JournalMode 4

#define OP_Vacuum 5

#define OP_VFilter 6 /* jump,

synopsis: iplan=r[P3] zplan='P4' */

...

opcodes.c

/* Automatically generated. Do not edit */

/* See the tool/mkopcodec.tcl script for

details. */

#if !defined(SQLITE_OMIT_EXPLAIN) \

 || defined(VDBE_PROFILE) \

 || defined(SQLITE_DEBUG)

#if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)

|| defined(SQLITE_DEBUG)

define OpHelp(X) "\0" X

#else

define OpHelp(X)

#endif

const char *sqlite3OpcodeName(int i){

 static const char *const azName[] = {

 /* 0 */ "Savepoint" OpHelp(""),

 /* 1 */ "AutoCommit" OpHelp(""),

 /* 2 */ "Transaction" OpHelp(""),

 /* 3 */ "Checkpoint" OpHelp(""),

 /* 4 */ "JournalMode" OpHelp(""),

 /* 5 */ "Vacuum" OpHelp(""),

 /* 6 */ "VFilter"

OpHelp("iplan=r[P3] zplan='P4'"),

 ...

 }

bytecodes are composed of two parts, the opname,

short for operation name and the opargs, short for

operation arguments.

opname oparg oparg oparg oparg oparg

Using the EXPLAIN keyword, we can view an

output based on bytecodes.

Each byteocode program has many registers.

Registers store a variety of items like null values, 64-

bit integers or frame objects.

The bytecode engine has no stack on which to store

the return address of a subroutine. Return

addresses must be stored in registers.

10. Interesting

Features

Virtual Tables

Virtual tables are like any tables but, one cannot

create indexes on them, alter and add columns or

create triggers.
Virtual tables involve no reading and

writing to the db file.

shadow tables: Sometimes, some virtual table

implmentations store virtual table informations in

real tables called shawdow tables. Shadow tables

can be read and modified unless the

SQLITE_DBCONFIG_DEFENSIVE flag is set.

Common Table Expressions

Oracle needed recursive queries and they added

common table expressions.

Save points

Partial indexes

Developed for Expensify.

Misc

CREATE INDEX Idx1 ON fruitsforsale(fruit);

CREATE INDEX creates a new table sorted in the

case by fruit.

SORT works on results

11. Knowing The

Internals

WebSQL

👉 WebStorage on the web

👉 Not going to implement an engine from scratch: Use SQLite

👉 “User agents must implement the SQL dialect supported by

Sqlite 3.6.19”

👉 Example exploit: Omer Gull - SELECT code execution FROM

USING SQLite [4]

👉 Need upated version of SQLite -> conflict with requirement

of 3.6.19

👉 Aug 2022 Chrome: Deprecating and Removing webSQL [5]

👉Memory corruption available from JS

👉 Replaced by the beautiful IndexedDB written by

a developer from the noble house of Oracle

12. How SQLite Is

modified

LibSQL

LibSQL is a great fork of SQLite with the aim of

making SQLite Open Source.
 Currently, SQLite

operates in a Source Open rather than OpenSource

mode.
It aims to state compatible with SQLite.

With the advent of Wasm, SQL or NoSQL

solutions can come to the web. One

example is DuckDB-Wasm, another is

absurd-sql. Based on these creations, we

feel that the developer community can

iterate on and create new storage

solutions faster and better than browser

vendors.

libSQL introduced native WASM support to SQLite

LumoSQL

LumoSQL is a clone that is 100% on time. It does not

rely on merging the master.
 It has swappable db

engine and btree.
It has an edge on cryptography.

Martina Palmucci’s Master Thesis [11]: Martina

wrote a thesis entitled “Securing databases using

Attribute Based
 Encryption and Shamir’s Secret

Sharing (SSS)” on the LumoSQL project. The thesis

combines SSS and access based on user attributes

like SELECT etc.
 It is abbreviated as ABE-SSS

Attribute-based Encryption Shamir’s Secret Sharing.

There is an increased need to saveguard data

privacy. File-based encryption means that the data is

in the clear once the file is decrypted.
Another layer

of encryption at the data-level, particularly the field

level protects against internal attacks.

SSS operates by having shares: secrets that, when

combined together produce a key.
 Elliptic curves

reveal interesting properties for cryptographic uses.

A standard protocol used is the Elliptic-curve Diffie–

Hellman (ECDH).
 It allows two parties to create a

shared secret across an unsecured channel.
 But,

many protocols based on ECDH often require a

prime-order group.
 Elliptic curve groups are often

compound (group that is not made up of prime

numbers). Using the Decaf technique, it is possible

to obtain a prime-order group from an elliptic curve

group. Applying the Decaf technique to Curve25519

yields Ristretto255.

Elliptic-curve Integrated Encryption Scheme (ECIES)

is a hybrid encryption scheme.
 The term “hybrid”

refers to the use of both symmetrical and

asymmetrical cryptosystems inside it.

The projects implements access control using a

policy tree made up of booleans.
 Attributes are

encrypted using a private key.
 Resources have

corresponding policy trees.
 Access to a resource is

granted if the result of evaluating a user policy

expression is true.
 For a resource tree there is a

corresponding Shamir shares tree which is

encrypted.

DuckDB

Distributed clones

TOADD

Bloomberg

Bloomberg uses the SQLite code generator and

storage engine.
 The replaced the layers after by

their own implementation of a scaled, massively

concurrent, multi-data center storage engine. [10]

13. The Future
LibSQL and LumoSQL are great OpenSource

projects.

14. Ending Quotes
On not listening to institutionilized experts

I had this crazy idea that I’m going to build

a database engine that does not have a

server, that talks directly to disk, and

ignores the data types, and if you asked

any of the experts of the day, they would

say, “That’s impossible. That will never

work. That’s a stupid idea.” Fortunately, I

didn’t know any experts and so I did it

anyway, so this sort of thing happens. I

think, maybe, just don’t listen to the

experts too much and do what makes

sense. Solve your problem.

On not pondering on what lies ahead too much

If I’d known how hard it would be I

probably
 never would’ve have written it

[3]

On the opportunity to learn surrounding techs

Apple I came out, and I was about to buy

the Apple I and the Apple II came out. And

I bought just the motherboard for an

Apple II. Got it.

Had to build my own keyboard, my own

power supply, soldered it altogether. The

first board I got didn’t work. I called up

Apple, they put me through the technical

support and Steve Wozniak answers the

phone.
 and said, “Oh, yeah. Send it back.

We’ll send you another board.” They sent

me another motherboard and that one

worked. [10]
(About his Apple II) With just

4k of RAM i could understand everything

that was going on in that computer.
 I can

understand everything the computer was

doing there but now you know with the

smallest computer having 4GB of RAM,

there’s no way someone coming into this

now can understand everything that’s

going on in that computer.
 So, i started

very simple. [9]

On how to learn the knowledge he posses

I accumulated all this knowledge in the

course of four decades, five decades

almost. How do you learn that in 4 years

of university? I don’t know. … you have

some things take that as an article of faith,

yeah this works believe it.
[9]

15. References
👉 [1] SQLite, A Database for the Edge of the Network, DRH,

Databaseology Lectures, Carnegie Mellon (2015)

👉 [2] CORECURSIVE Podcast, Episode #066, The Untold Story

of SQLite

👉 [3] Richard Hipp Speaks Out on

SQLite, ACM SIGMOD interviews with DB people, Marianne

Winslett and Vanessa Braganholo (2019),

https://sigmodrecord.org/publications/sigmodRecord/1906/pdfs/06_Profiles_Hipp

👉 [4] DEF CON 27 - Omer Gull - SELECT code execution FROM

USING SQLite, https://www.youtube.com/watch?

v=JokZUjwGj4M

👉 [5] Deprecating and removing Web SQL,

https://developer.chrome.com/blog/deprecating-web-sql/

👉 [6] Craft vulnerable db

https://github.com/CheckPointSW/QueryOrientedProgramming/blob/master/qop.p

👉 [7] https://www.sqlite.org/fileformat.html#record_format

👉 [8] https://fly.io/blog/sqlite-internals-btree/

👉 [9] Richard Hipp, SQLite main author - Two Weeks of

Database, https://www.youtube.com/watch?

v=2eaQzahCeh4

👉 [10] Changelog podcast Episode 201, Why SQLite succeeded

as a database https://changelog.com/podcast/201

👉 [11]

https://www.pgcon.org/2014/schedule/attachments/319_PGCon2014OpeningKeyn

👉 [12] Securing databases using Attribute Based
Encryption

and Shamir’s Secret Sharing (SSS), Martina Pulmucci,

https://lumosql.org/src/lumosql/raw/c3f5ace49a2139e623be647a3a65753adfe4fd

at=LumoSQL-Thesis-Martina-Palmucci-2022.pdf

👉 [13] SQLite: Past, Present, and Future,

https://www.vldb.org/pvldb/vol15/p3535-gaffney.pdf

Images

👉 DGG-79: https://news.usni.org/2019/06/04/uss-oscar-austin-

fire-damage-repairs-will-stretch-into-2022

